On a chain of reproducing kernel Cartan subalgebras
نویسندگان
چکیده
منابع مشابه
Cartan Subalgebras in C*-Algebras
According to J. Feldman and C. Moore’s wellknown theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e., a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C∗-algebraic analogue of this theore...
متن کاملOn the Cartan Subalgebras of Lie Algebras over Small Fields
In this note we study Cartan subalgebras of Lie algebras defined over finite fields. We prove that a possible Lie algebra of minimal dimension without Cartan subalgebras is semisimple. Subsequently, we study Cartan subalgebras of gl(n, F ). AMS classification: 17B50
متن کاملCARTAN SUBALGEBRAS OF LEIBNIZ n-ALGEBRAS
The present paper is devoted to the investigation of properties of Cartan subalgebras and regular elements in Leibniz n-algebras. The relationship between Cartan subalgebras and regular elements of given Leibniz n-algebra and Cartan subalgebras and regular elements of the corresponding factor n-Lie algebra is established. 1 Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-...
متن کاملA Primer on Reproducing Kernel Hilbert Spaces
Description: Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moroccan Journal of Pure and Applied Analysis
سال: 2020
ISSN: 2351-8227
DOI: 10.2478/mjpaa-2021-0005